A hyperbolicity notion for linear differential equations $x’ = A(t)x$ where $t$ in $ [t-, t+]$ is defined which unifies different existing notions like finite-time Lyapunov exponents (Haller, 2001, [13], Shadden et al., 2005, [24]), uniform or M-hyperbolicity (Haller, 2001, [13], Berger et al., 2009, [6]) and $(t-, (t- - t+))$ -dichotomy (Rasmussen, 2010, [21]). Its relation to the dichotomy spectrum (Sacker and Sell, 1978, [23], Siegmund, 2002, [26]), D-hyperbolicity (Berger et al., 2009, [6]) and real parts of the eigenvalues (in case A is constant) is described. We prove a spectral theorem and provide an approximation result for the spectral intervals.